If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2=720
We move all terms to the left:
4x^2-(720)=0
a = 4; b = 0; c = -720;
Δ = b2-4ac
Δ = 02-4·4·(-720)
Δ = 11520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11520}=\sqrt{2304*5}=\sqrt{2304}*\sqrt{5}=48\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{5}}{2*4}=\frac{0-48\sqrt{5}}{8} =-\frac{48\sqrt{5}}{8} =-6\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{5}}{2*4}=\frac{0+48\sqrt{5}}{8} =\frac{48\sqrt{5}}{8} =6\sqrt{5} $
| 117-x=162 | | 7x12=0 | | 7x-2=6+3x | | 165=-v+7 | | 4y^2-15y=y | | y+2/3=9/4 | | 4=2y−4 | | 3b+17-1+b-4^2=100-4 | | x+3x+4(3x)=112 | | -9x+-18=54 | | 1/8+y=2.75 | | z/6+9=−12 | | 3x+15+2x=21+5x-6 | | 176-w=241 | | -63/40=9/10p | | 15(x)=20 | | 8+y=2.75 | | 13/12=5/6x | | 281=239-w | | 5d+9=39 | | 5+2y=-13+2 | | -4x+6=6x-10 | | 9x+27=26 | | 6+1/39x-9)=1/2(2-x) | | 12x-9=12x+7 | | 6=2(3+4s) | | 4x-5=-11=3x | | 222=53-y | | 22^3x+2=114 | | 2x-8=2, | | 3x-6=15, | | X/3+x/2=1/5-x/10 |